An Intial-Value Technique for Self-Adjoint Singularly Perturbed Two-Point Boundary Value Problems
نویسندگان
چکیده
منابع مشابه
Variable Mesh Finite Difference Method for Self-adjoint Singularly Perturbed Two-point Boundary Value Problems
A numerical method based on finite difference method with variable mesh is given for self-adjoint singularly perturbed two-point boundary value problems. To obtain parameteruniform convergence, a variable mesh is constructed, which is dense in the boundary layer region and coarse in the outer region. The uniform convergence analysis of the method is discussed. The original problem is reduced to...
متن کاملParameter-uniform Fitted Operator B-spline Collocation Method for Self-adjoint Singularly Perturbed Two-point Boundary Value Problems
Under these conditions the operator L admits the maximum principle [1]. These types of problems, in which a small parameter multiplies the highest derivative, are known as singular perturbation problems. They arise in the mathematical modeling of physical and chemical processes, for instance, reaction diffusion processes, chemical reactor theory, fluid mechanics, quantum mechanics, fluid dynami...
متن کاملA hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کاملAn Ε-uniform Finite Element Method for Singularly Perturbed Two-point Boundary Value Problems
This work develops an ε-uniform finite element method for singularly perturbed two-point boundary value problems. A surprising and remarkable observation is illustrated: By inserting one node arbitrarily in any element, the new finite element solution always intersects with the original one at fixed points, and the errors at those points converge at the same rate as regular boundary value probl...
متن کاملB-SPLINE METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEMS
In this work the collocation method based on quartic B-spline is developed and applied to two-point boundary value problem in ordinary diferential equations. The error analysis and convergence of presented method is discussed. The method illustrated by two test examples which verify that the presented method is applicable and considerable accurate.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Applied Mechanics and Engineering
سال: 2020
ISSN: 2353-9003,1734-4492
DOI: 10.2478/ijame-2020-0008